Binary counter using SN74HC595 shift register

Binary counter using SN74HC595 shift register

Main Diagram

HARDWARE REQUIRED:

  • PICUNO Microcontroller board
  • 8 × LEDs
  • 8 × 220Ω resistors
  • 1 × SN74HC595 Shift Register
  • Breadboard
  • Jumper wires
  • USB cable

DESCRIPTION:

The microcontroller counts from 0 to 255 in a loop. Each count value is an 8-bit binary number that gets sent to the SN74HC595. The shift register updates the state of 8 LEDs, visually showing the binary form of the count. Additionally, the value of the binary number is printed to the serial monitor on the laptop via USB.

CIRCUIT DIAGRAM:

[Fritzing image to be added here]

  • Connect the PICUNO board to the computer using a USB cable.
  • Connect the SN74HC595 Pins 1 -- 7, 15 to 8×220Ω resistors where each of them is connected anode of 8 LEDs.
  • Connect the cathode of all LEDs to GND.
  • Connect Pins 8 and 13 to GND.
  • Connect Pins 10 and 16 to 3.3 V.
  • Connect Pins 11, 12, 14 to GPIO 7, 8, 6 respectively.

SCHEMATIC:

SN74HC595 Pin 1--7, 15 (Q0--Q7) → 8x 220-ohm resistors → LEDs anode

LEDs cathode → GND

Pin 8 → GND

Pin 16 → VCC (3.3 V)

Pin 10 (MR) → Connect to VCC (keep shift register active)

Pin 13 (OE) → Connect to GND (output enable active)

Pin 11 (SRCLK/Clock) → Connect to GPIO 7

Pin 12 (RCLK/Latch) → Connect to GPIO 8

Pin 14 (SER/Data) → Connect to GPIO 6

CODE -- C:

int dataPin = 6;
int clockPin = 7;
int latchPin = 8;

void setup() {
  pinMode(dataPin, OUTPUT);
  pinMode(clockPin, OUTPUT);
  pinMode(latchPin, OUTPUT);
  Serial.begin(9600);
}

void loop() {
  for (int i = 0; i <= 255; i++) {
    digitalWrite(latchPin, LOW); // Start data transmission
    shiftOut(dataPin, clockPin, MSBFIRST, i); // Send 8-bit data
    digitalWrite(latchPin, HIGH); // Latch data to outputs
    Serial.print(\"Count: \");
    Serial.println(i, BIN); //
    delay(300); // Wait before next count
  }
}
Serial.begin(9600) - Initializes serial communication so the binary count can be viewed on the Serial Monitor.

digitalWrite(latchPin, LOW) - Prepares the shift register to receive data.

shiftOut(dataPin, clockPin, MSBFIRST, i) - Sends the current count (0 to 255) as an 8-bit binary number.

digitalWrite(latchPin, HIGH) - Updates the register's outputs with the new value.

Serial.println(i, BIN) - Displays the binary number currently being shown on LEDs.

delay(300) - Adds a short pause before the next count.

CODE -- PYTHON:

from machine import Pin
import time

dataPin = Pin(6, Pin.OUT)
clockPin = Pin(7, Pin.OUT)
latchPin = Pin(8, Pin.OUT)

def shiftOut(value):
    for i in range(7, -1, -1):
        bit = (value >> i) & 1
        dataPin.value(bit)
        clockPin.value(1)
        time.sleep_us(1)
        clockPin.value(0)

while True:
    for i in range(256):
        latchPin.value(0)
        shiftOut(i)
        latchPin.value(1)
        print(\"Count:\", bin(i)) # Print binary value
        time.sleep(0.3)
shiftOut(i) - Breaks the 8-bit number into individual bits and shifts them to the register.

dataPin.value(bit) - Sets the data line to the current bit.

clockPin.value(1) → value(0) - Pulses the clock to shift in the bit.

latchPin.value(1) - Applies the shifted data to the output pins.

print("Count:", bin(i)) - Shows the binary value on the serial terminal (Thonny).

time.sleep(0.3) - Adds delay between counts.